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SOME ASPECTS OF NONIDEAL DETONATION IN COMPOSITE EXPLOSIVES* 

M. Cowperthwaite 
SRI International 

Menlo Park, California 94025 

ABSTRACT 

A theoretical treatment is formulated for steady-state planar 

detonation waves in composite explosives such as Amatex 20. This 
treatment provides a more definitve and realistic description of 

detonation in such explosives, and extends the classical Zeldovich-von 

Neumann-Doering model of ideal detonation into a propotype model for 

nonideal detonation. Incomplete decomposition of the slowest reacting 
component, and incomplete attainment of chemical equilibrium among the 

detonation products from the different explosive components were assumed 

to be the kinetic processes responsible for nonideal behavior. The 

constitutive relationship for the shocked reacting explosive was con- 
structed with different equations of state for the explosives and their 

products and enough reaction coordinates to account for this type of 

nonideality. Detonation parameters and Lagrange particle velocity 

histories were calculated for nonideal detonation waves in an explosive 

modeling Amatex 20. 

*This work was performed for the U.S. Army Research Office under 
Contract DAAG29-80-0076. 
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INTRODUCTION 

The theoretical work in this paper was performed to provide a more 
definitive and realistic treatment of detonation in composite explosives 
such as Amatex 20. We accordingly addressed the problem of steady-state 

planar detonation in a composite explosive X fabricated from three 
explosive components, XI, X2, and Xj considered respectively to be like 
RDX, TNT, and ammonium nitrate ( A N ) .  It was necessary in approaching 

this problem to identify and model rate processes that influence the 
detonation process and give rise to nonideal detonation. The limiting 
rate processes considered in the present treatment are chemical reac- 
tions that do not proceed to completion in the steady-state reaction 

zone. Nonideal behavior arises in this case because not all the avail- 

able chemical energy is used to support the propagation of the detona- 
tion wave. A constitutive relationship for shocked reacting explosive 
was constructed with different equations of state for the explosives and 
their products and enough reaction coordinates to account for this type 
of nonideality. This constitutive relationship was combined with the 
equations governing the reaction zone in a steady-state planar detona- 
tion to obtain the equations governing detonation in our composite 

explosive. These equations demonstrate the dependence of the detonation 
process on the incompleteness of reactions and on the equation of state 
of the condensed explosive. The expression relating the particle velo- 
city and the reaction coordinates in a steady-state reaction zone was 
also derived. This expression was combined with model reaction rate 
expressions to generate Lagrange particle velocity histories and inves- 
tigate their dependence on the relative rates of the exothermic reac- 
t ions. 
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THEORETICAL TREATMENT 

Our theoretical treatment is based on the assumption that planar 

one-dimensional detonation in our composite explosive can be treated as 

a Zeldovich-von Ne~mann-Doeringl-~ (ZND) wave. In this case, states in 

a steady-state detonation are governed by the Rankine-Hugoniot (RH) jump 
conditions4 expressing the balance of mass, momentum, and energy in a 

steady-state flow. The flow becomes sonic at the Chapman-Jouguet (CJ) 

point where the global energy release rate (GERR) becomes zero, and when 

all the reactions contributing to the (GERR) are exothermic, the CJ 
point is at the end of the reaction zone. Exothermic reactions consi- 

dered to contribute to the GERR are: 

The global decompositions of the explosive components 
XI, X2, and Xg into their detonation products in local 
chemical equilibrium. 

Reactions among the different detonation products of 
XI, X2, and X-, as they mix and react to approach global 
chemical equilibrium. 

We accordingly define the terms "ideal" and "nonideal" detonation used 

in this paper as follows. 

A steady-state ZND wave is said to be ideal when all the global 
decomposition reactions of the explosive components proceed to comple- 

tion and the products of these reactions attain global chemical equili- 

brium. Otherwise it is said to be nonideal. This definition leads us 

to assume that the two major factors responsible for nonideal behavior 

of our composite explosive are: 

(1) The incomplete decomposition of a slower reacting 
explosive component such as AN. 

(2) The unattainment of chemical equilibrium among the 
detonation products from different explosive components. 

We envisage the first factor to be important when the decomposition of 
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the slowest reacting component is not self-propagating and terminates 

when the decomposition of the faster reacting components has gone to 

completion. We envisage the second factor to be important when the time 

scale for the detonation products to mix and react exceeds the time 
scales for the decomposition reactions. The constitutive relationship 

for reacting composite explosive used in a treatment of nonideal detona- 

tion must include enough reaction coordinates to account for nonideality 

arising from factors (I) and ( 2 ) .  

respectively, to be like RDX, TNT, and AN, it was necessary to construct 

a constitutive relationship for the reacting explosive with four reac- 
tion coordinates, hl, h 2 ,  h 3 ,  and h4.  

account respectively f o r  the global decompositions of XI, X2, and X3, 
and the fourth accounts for the recombination of the oxygen produced by 

X3 and the carbon produced by X1 and X2. 
equations and formulate our treatment of nonideal detonation. 

With XI, X2, and X3 considered, 

The first three coordinates 

We now introduce the governing 

Governing Equations 

Flow Equations 

We first introduce the notation used t o  describe our one-dimensional 

flow. Time is denoted by t, Lagrange distance by h, specific volume by 

v, particle velocity by u, pressure by p, sound speed by c, and specific 

energy by e; the subscript x denotes explosive, and the superscript o 

denotes the constant state ahead of the wave. Neglecting the initial 

pressure, the flow in our steady-state ZND wave is governed by the RH 
jump conditions written as 

VD = vz (D - u) (1) 

where D denotes the propagation velocity. We use H as a subscript o r  as 
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a superscript to denote the shocked state at the wave front, and we use 
CJ as a subscript to denote the CJ point. Then the equations for the 

H shocked state are obtained by setting v = 4, u - uH, p = 91, and e = ex 

in Eqs. (1)-(3), and the equations for the CJ state are obtained by 
writing the CJ condition as 

and setting v = vcJ1 u = uCJ, p = pcJl and e = eCJ in Eqs. (1)-(3). 

adiabatic inviscid flow in the wave behind the shock is governed by the 

following expressions for the laws of conservation of mass, momentum, 
and energy: 

The 

The flow and chemistry in our ZND wave are coupled by the constitutive 
relationship relating e and the reaction coordinates h l ,  X2, 13, and Xq. 

Equations for the Explosives 

Following the papers by Kamlet et a1.,5-7 we write the molecular 

formulas of our explosive components XI, X2, and X3, respectively, 
as C N with i * 1, 2 ,  and Hb N . We also assumed that ai Hbi ci Odi 3 c3 Od3 
the decompositions of X1 and X2 satisfy the H20 - C 0 2  arbitrary 

equilibrium condition. 

CO2 as being the only important detonation products, with H20 having 
priority in formation over C02. 

of Xi, with i = 1, 2 ,  as 

The H20 - C02 arbitrary represents N2, H20, and 

We accordingly write the decomposition 

+ - N 2 + - H 0  ci bi 
'a i 'bi Nci Odi 2 2 2  

+(> - ?)CO2 + (81 - > + 4) c 
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Extending the notion, we assume that the decomposition of X3 satisfies 

the H20 - 02 arbitrary so that N2, H 2 0 ,  and 02 are the only detonation 

products, with H20 having priority in formation over 02. 

write the decomposition of X3 as 
We accordingly 

(9) 
c3 b3 

+ - N 2 + - H 0 +  2 2  H N  b3 c3 Od3 2 

The reaction coordinates h l ,  h 2 ,  and h3 are used to describe the 
decompositions specified by E q s .  (8)  and (9), and the reaction coordi- 

nate h4 is used to describe the reaction 

with 

that may occur among the decomposition products of X1, X 2 ,  and X3. 
Because of the H20 - C02 and H20 - O2 arbitrary assumptions, only one 

reaction is needed to account for subsequent reactions among detonation 

products. 

by (AH:)s , the standard heats, Qi, liberated in our exothermic 
reactions Eqs. (8)-(10) are given by the equations 

With the standard heat of formation of a species Sj denoted 

j 

with i = 1, 2 
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where (AH:)H2o - -57.8 kcal/mole and = -94 kcal/mole. We now 

introduce the notation used to describe our explosive mixture and its 

reaction products. We let the subscript p denote detonation products, 

let MS 

let vz , ez , Ni, and ai denote the initial specific volume, the in1 
specific internal energy, the number of moles, and the mass fraction 

the explosive Xi in our composite explosive X. 
related by the equation 

denote the molecular weight of a product species Sj, and we 
j 

1 1  

Then Ni and ai are 

i = l , .  . . 3  
i N i  = ai/M X 

la1 

of 

3 With NiMx = 1. We assume that the mixture of explosives is ideal 

and write the following equations for its specific volume, specific 

internal energy, and specific heat of formation: 

i 

where (Ah:)S = (AHo) /Ms . If we assume that the initial pressure is 

zero, Eqs. (16) and (17) are identical because 

1 
8 ,  
Xi has decomposed completely. 

arbitrary assumptions it follows from Eqs. (8) and (9) that 

j f S j  j 
= eo . We let 

i x  i 
denote the mass fraction of a decomposition product, Sj, of Xi when 

j 
Then under the H20 - C02 and H20 - 02 

i i 
'N2 + BH20 
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and 

i 3 3 
’N2 + ’H20 -k ’02 = 

where 

i = 1, 2 ,  3 i 

’N2= ci%2/2ux i 

i = 1, 2 ,  3; i 
p H 2 0  = bi%20/2Mxi 

i = 1, 2; B, i = [2ai - (di - bi/2)] MC/2Mx 

i 

(d3 - b3/2)  Mo /2Mx 
3 

’02 2 3  

, . A  

We can then write the standard heats ql, q 2 ,  and q 

decomposition of 1 gram of X1, X2, and X3 as 

librated by the 3 

,. 
and the standard heat qd librated by the decomposition of X1, X2, and X3 

in 1 gram of X as 
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We now consider the reaction among the detonation products, Eq. ( l o ) ,  
and write the standard heat of this reaction for 1 gram of X3 as 

where p4 = (dg/2 - 
c02 

reactions proceed to 

the standard heat of 

b3/4) Mco2/Mx3. Thus, when all the exothermic 

completion in our composite explosive, we can write 

these reactions for 1 gram of X as 

A A 

Constitutive Relationship for Reacting Composite Explosive 

Our constitutive relationship for reacting composite explosive is 

an extension of the constitutive relationship formulated previously* for 

an explosive with one global decomposition reaction. We treat the 

explosive components and their reaction products as a mixture of phases 

that attains mechanical but not thermal equilibrium. It is also assumed 

that no appreciable amount of heat is transferred into the composite 
explosive as the decomposition reactions propagate and consume the 

explosive components. In this case, the explosive components are com- 

pressed or released isentropically as the reactions proceed, and the 

pressure increases or decreases along a particle path. 

We assume for convenience that the explosives and their products 

are polytropic materials, and we assume for tractability that the 

polytroptic indices of the explosive components are equal, i.e., 

K = K = K = K and that the polytropic index of carbon is the 

same as that of the other reaction products, i. e., Kc = K p .  
contrast to classical treatments of detonation, however, we do not 
assume that = Kp = K so that we can investigate the influence of the 

equation of state o f  the condensed explosive on the detonation process. 

XI x2 x3 x, 
In 

149 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
1
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



We accordingly write the (e-p-v) relationships for the explosive 

components and their reaction products as 

i i = 1, 2, 3 
PVX 

e - (Aho) + f xi (Kx - 13 i X 

We denote the specific entropy by s and write the mixture rules for the 

reacting explosive mixture as 

P e * Ce, + e 

P v = CV, + v 

P s = Csx + 

with 

3 
i=1 Cv, = c ai(l - X i )  vx 

i 

3 
=1 i 

X 
Cs, = ic ai(l - hi )  s 

and 

+ c2 A a p i  2 i 
e -p = i=1 C h a p  i i H O(Ah;)H20 i=1 i i C02(Ahi)C02 2 
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The combination of Eqs. (27),  (30), and (31) after some manipulation 

gives the constitutive relationship for our reacting mixture as 

I 

with qi = aiqi 
relationship for our composite polytropic explosive is obtained from Eq. 

(32)  by setting hl - h2 = h3 = 1, v - v 

(e-p-v-$) equation of state for a polytropic reacting explosive mixture 
is obtained from Eq. (32) by setting K, = $ = K. 

44 = a3q4, and sp = (% - Kp)/(% - 1). The (e-p-v) 

and e = e . The classical P’ P 

We now define the sound speed in our reacting mixture by the 
equation 

and we then use Eqs. (28) and (29) to express Eq. (33) in a more con- 

venient form. Differentiating Eq. ( 2 9 )  at constant s and \ leads to 
the equation 

dCs, + dsp = 0 ( 3 4 )  

and it follows that ds = 0 because ds 

assumption. Differenting Eq. (28) partially with respect to p at 
constant s and \ and taking account of these entropy conditions gives 
the equation 

= 0, i = 1, 2, 3 by 
xi P 

which for our polytropic materials can be written after some manipula- 
tion as 
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with f - (s - Kp)/Kx. The combination of Eqs. 
the following equation for K 

XP 

which reduces to K = K, when hl = A2 - A 3  - 0 and 

( 3 6 )  

(33) and (36) gives 

P v = vx, and to K = K 

when h l  = X 2  - h3 = 1. 

released down its own isentrope allows us to express the Cv, term in 

terms of pressure in a ZND wave. Because the explosive components are 

polytropic, their specific volumes can be written as 

The assumption that an explosive component is 

0 
X 

where 6i = v /v:. 

written in terms of pressure as 

Thus the equation for Cv, in our ZND wave can be 
i 

0 0  3 -  = ai v, /vx and i&l ai = 1. where a 
i i 

Nonideal Steady-State Detonation Waves 

The constitutive relationship can now be combined with the 

Rankine-Hugoniot jump conditions and the Chapman-Jouguet conditions to 

generate the equations governing the CJ state in our nonideal ZND wave 
and to generate the equation governing particle velocity in the 
steady-state reaction zone. 
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Chapman-Jouguet Conditions 

Then 
A 

h 3  - 
We set (hi)CJ - ii at the CJ point in our steady-state ZND wave. 
1, i4 = I} and nonideal detonation by the set [Al, h 2 ,  h3, i4} 

A ,. 
we can represent ideal detonation by the set [A 1 = ;, hZ = 1, 

with any one of the reaction coordinates satisfying the condition 

hi < 1. 
and the TNT-like component X p  decompose completely, and represent our 
nonideal detonation by the set ti, = 1, h 2  = 1, h g  < 1, X4 <,I}. We are 
therefore going to consider incomplete decomposition of the AN-like 

component and incomplete reaction among the carbon from XI and X2 and 

the oxygen from X3. 

In the present case, we assume that the RDX-like component XI 

A .. A 

We first combine E q .  ( 2 ) ,  (4), and (33) to obtain the following 
relationship between sound speed and particle velocity at the CJ point: 

A 

'CJ = uCJ (40) 

where 

K 
j : = s  

( 1  -I? cv /v ) xp x CJ 

A A 

with Zvx = a3(1 - X3)(vx )cJ . 
then gives the equations 

Combining Eq. ( 4 0 )  with E q s .  ( 4 )  and ( 1 )  
3 

D 
K + l  

UCJ 7 

K D  
K + l  

CCJ 7 (43) 

and 
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The equation 

expressing the tangency condition of the isentrope and the Rayleigh line 

at the CJ point is then used to obtain the following equations for the 

specific volume at the CJ point: 

- 
"X c J = P  +xp - 

V x p  P 

V K K 
o K + 1  K + 1  vo 

X 

v (1 - it ccx/v;, 
I - - -  CJ - 

0 K + 1  
V P X 

( 4 7 )  

The combination of Eqs. ( 4 4 )  and ( 4 7 )  then gives the following equation 
relating the polytropic indices at the CJ point: 

The equation relating the CJ pressure and the shock pressure at the 

front of our ZND wave is obtained as 

- 0  
Kx + 1 

P 

'CJ - 

PH 
- -  

2(K + 1) (I - 'xp evx/vx) 

by comhining Eq. (471, the strong shock condition 

VH 2 
1 7 - y  

X 

( 4 9 )  
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and t h e  fo lowing  e q u a t i o n  e x p r e s s i n g  t h e  ba l ance  of mass and momentum in 

a s t e a d y - s t a t e  wave 

PCJ - C J  /vo) x 
- m  

(1 - vH/vE) 

The e q u a t i o n  f o r  t h e  d e t o n a t i o n  v e l o c i t y  is o b t a i n e d  by combining t h e  RH 

jump c o n d i t i o n s ,  t h e  c o n s t i t u t i v e  r e l a t i o n s h i p  Eq. (32) ,  and t h e  C J  

c o n d i t i o n .  It is conven ien t  t o  set  

and combine Eqs. (21 ,  (31, and (32) to o b t a i n  t h e  f o l l o w i n g  e q u a t i o n  f o r  

t h e  p a r t i c l e  v e l o c i t y :  

2(K - 1) 2DU 

P P 
u2 - - K + 1  (1 - Kxp&/v.X) = - K P + l  (53)  

1 

The CJ c o n d i t i o n  D = (K + 1)uCJ then g i v e s  t h e  f o l l o w i n g  e q u a t i o n  f o r  

where Q = q1 + q2 + S (q3 + k q ) because of ou r  assumption t h a t  

hl = X2 = 1. 
4 4  

Combining Eqs. (54)  and ( 4 8 )  g i v e s  t h e  f o l l o w i n g  e q u a t i o n  

C J  ( 5 5 )  
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which with Eqs. (44) and (48) leads to the following equation for the 
detonation velocity: 

P DL = (56) 
(1 - E XP ix/vi) [l - (2Kxp - k x p ) ~ x / v ~  ] 

The problem of nonideal detonation in our simple treatment of detonation 

is that of calculating C vx/vx, h3,  and h 4 .  

that the equation for Z v /v can be written as 

A o A  It follows from Eq. (39) 
- 0  
x x  

A A 

but models for calculating A and A must be formulated or their values 3 4 
must be estimated before detonation parameters can be calculated. 

Examination of the equations for the CJ parameters shows that the 

equations for complete decomposition of X3 with 4-s 1 have the same 

form as those for polytropic explosive with K = K = 0. In this 

case, the equation for the detonation velocity reduces to 
XP xp 

and the nonideality arises solely from the incompleteness of the 
reaction among the carbon from X1 and X2 and the oxygen from X3. 

Dependence of Particle Velocity on Reaction Coordinates 

It is convenient to use Eq. (53) to derive the relationship of the 
particle velocity and the reaction coordinates in a steady-state ZND 

wave. We write Eq. (53) to make its left-hand side into a perfect 
square and then combine this equation with the CJ conditions, Eqs. (42) 
and (48), to obtain the equation 
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U 
(59) 

2(Ki - 1)Q 
( 1  - KxpZvx/vx) 0 2 D 2 f  

Equation (56) then al lows Eq. (59) t o  be w r i t t e n  a s  

(1 - Kx E v x / v ~ )  

C J  (1  - 1; /vo) 
x p x x  

2- 
U 

r) (60) 
1 - [ 1 - ( 2Kx - Ex )ZV,/V,]( 0 1 - Ex ZvX/vx)Q 

(1 - K Zv /v:)~ 6 6 + I  x p x  

with 

from Eq. (39) ,  and wi th  A1 = h 2  = 1, h j  = h j  , and h4 = X 4  a t  the  C J  

point  where Q - Q, Zv, = Zv 

p a r t i c l e  v e l o c i t y  i n  a s teady-s ta te  ZND wave when X3 decomposes 

completely is obtained by s e t t i n g  h 3  = 1 i n  Eq. (60) as 

and u - ucJ. The equat ion f o r  t h e  x '  

A 

Q 

where Qd = q1 + 92 + q 3  + A4q4. The equat ion f o r  the  p a r t i c l e  v e l o c i t y  

in a s teady-s ta te  ZND wave i n  p o l y t r o p i c  explosive is obtained from Eq. 

(60) by s e t t i n g  Kxp = = 0 and is convenient ly  w r i t t e n  as 
XP 
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where 

- - - -  
a1 + a2 + a 3  i- a4 5 1 

Differentiating Eq. ( 5 3 )  with respect to time along a particle path 

gives the following equation for the deceleration in a steady-state 

reaction zone: 

where 

and 

- 
Q' = D u C a -  

U i=i i at 

Because au/at is finite, it follows in general from E q s .  (64) and (66) 

that the rates of all the reactions must be zero, i. e., ahi/at = 0 for 

i = 1, 2 ,  3 ,  and 4 ,  at the sonic point where u = ucJ = D ( 1  - 
(K 
steady-state reaction zone of our nonideal detonation wave. The 
following equation, 

EV~/V:)/ 
XP 

+ 1). In other words, the CJ point is located at the end of the 
P 
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obtained by setting u = U, and hl = h2 = A3 = A4 = 0 in Eq. (64), leads 

to the conclusion that the particle velocity will Increase at the front 

of the wave when Kxp (s - 1) i41 ai ahi/atH > 2 (K - 1) ( 6  / 
with this property will not, however, be considered in this paper. 

Equations (60), (62), and (63) can be used to calculate Lagrange parti- 

cle velocity histories when expressions for the reaction coordinates are 

known as functions of time. The Lagrange histories can then be examined 

to investigate the influence of the relative rates of the exothermic 

reactions on particle velocity. Such calculations will be presented 

next. 

3 -  2 
P H %  ) .  Waves 

Model Nonideal Detonation Calculations 

Properties of the explosive X, its components X1, X2, and X3, and 
We set vo = their detonation products were chosen t o  model Amatex 20. 

0.6201 cm3/g so that the initial density p z  = 1.613 g/cm3, and we 

assigned X1, X2, and X3 the values of the parameters shown in Table 1. 

X 

We set q4 = 587.5 cal/g and q4 = 235 cal/g according to Eqs. (23) 
and (24), and set set \ = 5.34 and Kp = 2.67, so that sp = 0.6152 

and iT 
1186.1 cal/g, and when X1, X2, and X3 decompose completely, the 
detonation velocity D, the shock pressure pw, the CJ pressure pcJ, and 

the CJ particle velocity ucJ vary from values of 6.98 mm/ps, 247.7 khar, 

214 kbar, and 1.90 mm/ps to values of 7.80 m / ~ s ,  309.6 kbar, 
267.4 kbar, and 2.12 mm/ps as X4 varies from zero to one. 
calculate detonation parameters when A 

3 = 0.5. In this case, qd = iG1 , qi = 951.1 callg, qd + 94 = 
XP 

We will now 

= A2 = 1, h3 < 1, and h4 < 1. 
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Detonation Parameters 

We calculate detonation parameters for a nonideal detonation 
A 

with h 3  < 1 and h4 < 1. 
hypothesis that the slope of the D versus h3 curve is postive as A 

approaches 1 when h4 is a function of 13. 
Eq. (56) and set dD/dh3 > 0 when h3 = 1 to find conditions to satisfy 
this hypothesis. For notational simplicity, we set 
- I( 

XP 
equation 

Our calculations are based on the intuitive 
6 

3 
We accordingly differentiate 

A A 

p p  - K 1  and 2Y,p - 
= K2. Differentiating Eq. (56) with respect to h3 then gives the 

L J 

which reduces to 

(Kx - 1) ( 2(Kp + l)riKx 
- ’%P ‘3 (K, + 1 )  (K, + 1) 

A 

when h3 = 1. 

(dD/d A3)- > 0 when 
‘3=l 

We set h4 = n h3 with n < 1 for simplicity so that 

93 -+ 2n 94 - (Kx - 1) ( 2 ( K  + 1))”8 
> 2 K  a - 

91 + 92 + 93 + n q4 XP 3 (Kx + 1 )  (Kx + 1 )  

Solving this inequality for n shows that 

9 

(70) 

(dD/dh.,).. > O  
h3 - 1 
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Table 1 

VALUES OF THE PARAMETERS FOR X1, X2, and X3 

0.2 0.5649 0.1821 1482.4 296.5 

0.4 0.667 0.4302 1282.8 513.1 

0.4 0.6009 0.3877 353.7 141.4 

X1 

x2 

x3 
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when n > 0.454. We are now in a position to calculate detonation 
parameters for specific values of n and A j .  

Eqs. (49), (57), (56), (48), (42), (2), and (46) to calculate values of 
We set n = 0.6, and use 

the detonation parameters for specific values of h3  as follows. 

Equations (49) and (57) are solved for a given value of A to find the 

corresponding values of (h/pcJ) and CV,/V:. 

are then used to calcuate the values of D and K, and equations (42), 
(2), and (46) are used to calculate the values of ucJ, pcJ and vcJ/v:. 

Calculated values of the detonation parameters are given in Table 2 .  

Values of the detonation velocity are given to three figures in 

A 

3 
Equations (56) and (48) 
L) 

Table 2 to show that the detonation velocity has a minimum at A 3  a 0.75, 
while the CJ pressure and particle velocity increase monotonically as A3 

increases from a value of 0.45 to a value of 1. The detonation velocity 

exhibits a minimum because K decreases monotonically with A 

increases. This minimum demonstrates the influence of the equations of 

state of the condensed explosives on the nonideal detonation process in 

composite explosives. 

as ucJ 3 

Lagrange Particle Velocity Histories 

It is clear from Eq. ( 6 0 )  that expressions for time variations of 

the reaction coordinates A1, A 2 ,  h 3 ,  and A4 must be known before we can 

calculate the Lagrange particle velocity history in the reaction zone of 

a nonideal steady-state reaction zone. Bearing in mind that the rates 

of all the exothermic reactions must be zero at the CJ point, we 

formulated simple expressions for the reaction coordinates to perform 

such calculations. These expressions are based on the following 

equation for a reaction that proceeds to completion. 

where ni > 2 ,  the Lagrange time z denotes the time a particle enters the 
wave, and the overall reaction time T denotes the time it takes a 
particle to travel from the shock front to the CJ plane. Equation (71) 
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Table 2 

DETONATION PARAMETERS FOR A 3  5 1 AND h4 = 0.6 A3 
A 

0.45 7.505 

0.55 7.479 

0.65 7.464 

0.75 7.459 

0.85 7 A63 

0.95 7.475 

1.00 7.484 

PCJ 
(kbar) 

228.7 

230.6 

233.1 

236.1 

239 .a 
243.9 

246.2 

uCJ 
(mm/vs> 

1.889 

1.911 

1.936 

1.963 

1.992 

2.023 

2.039 

vCJ/vt K 

0.7483 2.972 

0.7444 2.913 

0.7406 2.856 

0.7369 2.800 

0.7331 2.747 

0.7294 2.695 

0.7275 2.670 

%/pCJ 

1.253 

1.234 

1.216 

1.199 

1.182 

1.166 

1.158 
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is written so that hi = 0 at the shock front where t - T = 0, and 
hi = 1 at the CJ point where (t - r) = T. 
respect to time along a particle path gives the equation for the 
reaction rate as 

Differentiating Eq. (71) with 

and it follows from Eq. (72) that we are restricting our consideration 
to reactions with negligible activation energies. 

We use Eq. (71) with i = 1 and i = 2 to model respectively the 

decomposition of X1 and X2. 
reacting RDX-like component X1 my decompose completely within the 

reaction zone, we introdme a parameter f > 1 and modify Eq. (71) by 
setting 

To account for the fact that the faster 

and 

= 1 for (t - T ) / T  > (f  - l)/f (74) 

I n  this case, the decomposition of X1 is complete when (t - T ) / T  = 

( f  - l)/f; when f = 3, for example, the X1 decomposition time is 2T/3. 

It is clear that Eq. (73) can be written in the same form as Eq. (71) by 

scaling the reactioa time and setting the new reaction time as 

Ti = (f - 1) T/f. 

To model the case when the decomposition of X3 is not self-propagating, 
we simply set 

with n3 < 1 and ah2/at given by Eq. (72) with i = 2 ,  so that the 
decomposition of X3 ceases at the end of the reaction zone where it is 
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not being supported by the decomposition of the other more energetic 

components. Integrating Eq. (75 )  give the equation 

and it follows that h3 

2 reaction zone where h 

To model the case 
from X3 and the carbon 

will 
= 1. 

when 

from 

have a value of h3 = n3 at the end of the 

the recombination reaction of the oxygen 

X1 and X2 proceeds at a lower rate than the 

production of the oxygen, we set 

-P ah4 ah3 ah2  
at "4 at = "4"3 at (77) 

with "4 < 1, so that 

and h4 = n4h3 = 

Equations (71), 

(Cf - A (c) 

n4n3 at the end of the reaction zone where A p  = 1. 

(73), (74), (76), and (78) with Eq. (53)  rewritten as 

(1 - K Zvx/v:) = 
XP 

A (1 - K ZG /vo]) 
X p x x  

calculate Lagrange particle 

velocity histories in the reaction zone of nonideal detonation waves 

with h3 = 0.8 and h4 = 0.6. 
1.977 mm/ps, and uH/ucJ 5 1.190; the equations for calculating values of 

h3 and A4 are obtained as h3 E 0.8 A2 and A4 = 0.6 A3 by setting 
n3 = 0.8 and n4 = 0.6 in Eqs. (76) and (78). 

In this case, D = 7.46 mm/ps, ucJ = 

A Newton-Raphson method was ued to calculate values of (u/ucJ) from 

Eq(79) throughout the reaction zone with values of A1 and A 2  calculated 
from Eqs ...( 71), (73), and (74). The results of three such calculations, 
based on the assumption that XI decomposes faster than X2, are shown 
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g r a p h i c a l l y  i n  F i g u r e s  la-3a and lb-3b. The p r o f i l e s  i n  F i g u r e s  l a  and 

l b ,  2a and 2b, and 3a and 3b were c a l c u l a t e d  r e s p e c t i v e l y  w i t h  t h e  

f o l l o w i n g  sets  of paramete r s :  

n2 = 2), and  In1 = 3, f = 3, n2 = 3 ) .  

[n l  = 3, f = 4 ,  n2 = 2 ) .  {nl  = 2 ,  f = 3, 

D i f f e r e n t i a i n g  Eq. (66)  p a r t i a l l y  a g a i n  w i t h  r e s p e c t  t o  t shows i n  
2 2 g e n e r a l  t h a t  (au/at),, < 0 when ( a  A2/at  I,,> 0 , and tha t  (au/at),, = 0 

when ( Q  A2/at  ) ,, = 0 when A1, A 3  and  A 4  are governed by Eqs. ( 7 3 ) ,  

( 7 5 ) ,  and (77 ) .  Examinat ion of t h e  p a r t i c l e  v e l o c i t y  h i s t o r i e s  shows 

t h a t  t h e s e  c o n d i t i o n s  a r e  s a t i s f i e d  because (au/at) ,J  < 0 i n  F igu res  l a  

and 2a where n2 = 2 and (a2A2/at2),-.-. > 0 ,  and (au/at) , ,  - 0 i n  F igu re  3a 

where n2 = 3 and (a2h2/at2), ,  = 0. F u r t h e r  examina t ion  of F i g u r e s  la-3a 

show t h a t  d e t a i l e d  p r o p e r t i e s  of t h e  Lagrange p a r t i c l e  v e l o c i t y  h i s t o r y  

depend on t h e  e q u a t i o n s  of s ta te  of t h e  e x p l o s i v e  and t h e  d e t o n a t i o n  

p r o d u c t s  as  w e l l  as t h e  energy release rate .  However, t h e  q u a l i t a t i v e  

f e a t u r e s  of t h e  p a r t i c l e  v e l o c i t y  h i s t o r y  are governed by t h e  energy 

r e l e a s e  r a t e ,  as shown by t h e  o b s e r v a t i o n s  t h a t  (1 )  t h e  h i s t o r y  calcu-  

l a t e d  w i t h  (n l  = 3,  n2 = 2) is g e n e r a l l y  s t e e p e r  t h a n  t h e  h i s t o r y  

c a l c u l a t e d  w i t h  (nl  = 2 ,  n2 = 2 ) ,  and ( 2 )  t h e  h i s t o r y  c a l c u l a t e d  wi th  

("1 = 3 ,  n2 = 3 )  is g e n e r a l l y  s t e e p e r  t h a n  t h e  h i s t o r y  c a l c u l a t e d  w i t h  

(nl = 3, n2 = 2 ) .  

2 2 
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FIGURE l a  PARTICLE VELOCITY vs TIME IN REACTION ZONE 
CALCULATED WITH n1 = 3, f = 4 ,  AND n2 = 2 
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FIGURE l b  REACTION COORDINATES vs PARTICLE VELOCITY IN REACTION 
ZONE CALCULATED WITH n1 = 3, f = 4, AND n2 = 2 
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FIGURE 2a PARTICLE VELOCITY vs TIME IN REACTION ZONE 
CALCULATED WITH n1 = 2, f = 3, AND n2 = 2 
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FIGURE 2b REACTION COORDINATES vs PARTICLE VELOCITY IN REACTION 
ZONE CALCULATED WITH n1 = 2, f = 3, AND n2 = 2 
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FIGURE 3a PARTICLE VELOCITY vs TIME IN REACTION ZONE 
CALCULATED WITH n1 = 3, f = 3, AND n2 = 3 
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CONCLUSIONS 

We have formulated a treatment of steady-state detonation waves in 

composite explosives. Our formulation extends the classical ZND model 

for ideal detonation into a prototype model for nonideal detonation. 

The constititive relationship used to describe shocked reacting explo- 

sive is based on the assumption that the explosive and its detonation 
products are governed by different mechanical equations of state and 

attain mechanical, but not thermal, equilibrium. The kinetic processes 

responsible for nonideal behavior are assumed to be incomplete decom- 
position of the slowest reacting explosive component and the incomplete 

attainment of chemical equilibrium among the detonation products from 

the different explosive components. 

To make our model applicable to Amatex 20, we considered a 

composite explosive containing an RDX-like component X1, a TNT-like 
component X2, and an AN-like component X3, 

tutive relationship must include four reaction coordinates: 

1 3  describe the decomposition of XIS X2, and X 3 ;  A 4  describes the 

reaction of the oxygen produced by X 3  and the carbon produced by X1 and 

In this case the consti- 

A l l  A2, and 

1 1 1  

X2. The reaction coordinates at the end of the reaction zone, hl' h2' hgs 
L 1 1 1  1 

and h 4 ,  satisfy the conditions hl= h2=,h3 ; h4 = 1 in an ideal detona- 

tion wave, and satisfy the conditions A1= h2= 1, h3< 1, and h4 < 1 in a 
nonideal detonation wave. 

The constitutive relationship was combined with the Rankine-Hugoniot 

jump conditions and the CJ sonic condition to obtain the equations for 
the CJ parameters at the end of the reaction zone in a steady-state non- 
ideal detonation wave. The equation governing particle velocity was 

combined with the CJ condition, relating particle velocity and 
detonation velocity in a nonideal detonation wave, to obtain the equa- 

tion relating the detonation velocity to the chemical energy released in 
the wave. These equations f o r  nonideal detonation specify the 
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dependence of the detonation parameters on the reaction coordinates and 

demonstrate that the detonation process is influenced by the equation of 

state of the explosive. Detonation calculations, using explosive 

parameters chosen to model Amatex 20, were performed with values of A3in 
the range 0.45 < 
of nonideal detonation parameters on the degree of incomplete 
decomposition of the explosive. Simplistic reaction rate functions were 

also constructed and used to calculate Lagrange particle velocity 

histories in nonideal detonation waves. 

.. 
A., < 1 and A4 = 0.6 h to investigate the dependence 3 

We conclude that the result of our theoretical study is a well- 

formulated model for steady-state detonation that provides us with a 

better understanding of nonideal detonation. However, we are still 

faced with a major problem of formulating a realistic treatment of the 

decomposition of AN and subsequent reactions along the detonation 

products. Before the present model of nonideal detonation can be used 

to calculate realistic nonideal detonation parameters, we must incor- 
porate (1) models for these kinetics processes that predict values of 

h3 and h 4 ;  and (2) more realistic equations of state. 
,. 
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